Ion selective electrode (ISE)

Riya Patel Minal Meghat Sangita Prajapati Riya Gamit Hemangini Painter

Introduction

- Ion selective electrode (ISE) is an analytical technique used to determine the activity of ions in aqueous solution by measuring the electrical potential.
- Specific ion dissolved in a solution create an electrical potential, which can be measured by a voltmeter or pH meter.
- The strength of this charge is directly proportional to the concentration of the selected ion.

Principle

- ISE consists of a thin membrane
- Only specific ion can be diffuse.
- By measuring the electric potential generated across a membrane by "selected" ions, and comparing it with reference electrode.
- And net charge is determined.

Potentiometry

- Potentiometry
 - Use of Electrodes to Measure Voltages that Provide Chemical concentration
 - Indicator Electrode:
 - Electrode that responds to analyte
 - <u>Reference Electrode</u>:
 - > Second $\frac{1}{2}$ cell at a constant potential
 - Cell voltage is difference between the indicator and reference electrode

Reference Electrode

Silver-Silver Chloride Reference Electrode

$$\operatorname{AgCl}(s) + e^{-} = \operatorname{Ag}(s) + \operatorname{Cl}^{-}$$

Types of ISE

- Glass membrane
- Solid state electrode
- Liquid based electrode
- Compound electrode

Glass Membrane Electrode

- This method uses the electrical potential of pH-sensitive **electrodes** as a measurement signal.
- The glass electrode is the most commonly used sensor.
- Not having the **disadvantages** of the optical methods, it can be used almost universally.

Solid State Electrode

- Electrode body of Inorganic crystalline polymer.
- E.g. Special Epoxide Resin with excellent mechanical properties.
- High temperature stability.

Liquid based electrode

- Formed by a very thin layer of an organic liquid.
- Membrane is like jelly
- Impermeable to water
- only to allow to pass certain ion.
- Organic material
 - Carbon tetrachloride
 - Benzene
 - Mesitylene

Compound electrode

• Electrode have membrane of multiple type

Electrolytes

- Type of ions
 - ≻ Cations Positive charge
 - \succ move toward the cathode
 - Na+ = Extracellular Brain Activity
 - K+ = Intracellular Heart & Muscle
 - Ca+ = Extracellular Heart & Muscle
 - H+ = Extracellular Acidic
 - ≻ Anions Negative charge
 - \succ move toward the anode
 - Cl Extracellular
 - HCO–3 Extracellular Basic

Sample Collection

- Serum
 - Collected in heparin bulb
 - Plain
 - EDTA can not be use for doing electrolyte
 - EDTA is chelating agent & anti-coagulant.
 - It chelat with all ions of blood
 - So interfere with concentration of ions
- Urine
 - Collected in plain vacuette

Types of Heparin vacuette

- Ammonium
- Lithium = Lithium+ heparin
- Sodium=Sodium+ heparin

For measure the sodium

- lithium heparin vacuette
- ammonium heparin vacuette

Use of sodium vacuette gives false high sodium concentration.

Routinely measured electrolytes

Sodium

- (90%)Major cation
- Extracellular fluid outside cells

Normal values

- Serum = 135-145 mEq/L
- Urine (24 hr) = 40-220 mEq/L

Functions

- Influence on regulation of body water
- Osmotic activity
- Central Neuromuscular activity

Hyponatremia

Hyponatremia <135 mEq/L

- Increased Na+ loss
- Causes
 - Diabetes mellitus
 - Diabetic Ketoacidosis
 - -- Because of diuresis
 - Severe diarrhea & Severe Vomiting

Hypernatremia

- Excess water loss resulting in dehydration (relative increase)
 - Dehydration from inadequate water intake
 - Dehydration due severe diarrhea
 - Diabetes insipidus
 - Burns

Potassium (K)

- (2%)major cation
- Intracellular fluid inside cell
 Normal value
- Serum- 3.5-5.3 mEq/L
- Urine- 25-125 mEq/L

Function

Heart muscle contraction

Increase or Decrease K+= Arrhythmiasis

Hypokalemia

- **Hypokalemia** = a low level of potassium (K⁺) in the blood serum.
- Diarrhea
- Medications like furosemide (diuretic)
- Dialysis
- Diabetes insipidus
- Hyperaldosteronism

Hyperkalemia

- Increased K concentration
- Causes
 - Acute Renal failure
 - Chronic Renal failure
 - Acidosis (Diabetes mellitus)
 - H+ competes with K+ to get into cells & to be excreted by kidneys
 - Decreased insulin promotes cellular K loss
 - Hyperosomolar plasma (from \uparrow glucose) pulls H₂O and potassium into the plasma .

Chloride (Cl⁻)

Chloride Major cation Extracellular fluid Normal value

- Serum 100 -110 mEq/L
- 24 hour urine 110-250 mEq/L varies with intake
- CSF 120-132 mEq/L

Hypochloremia

Same as Hyponatremia

- congestive heart failure
- Severe diarrhea
- Severe vomiting
- drugs such as
 - •Laxatives
 - •diuretics
 - •corticosteroids
 - •Bicarbonates.

Hyperchloremia

- Same as Hypernatremia
- Increased serum Cl
 - dehydration
 - renal tubular disease
 - metabolic acidosis

Advantages

- 1. Good Linearity
- 2. Good precision
- 3. Less chance of damage
- 4. No consumption require
- 5. Non-contaminating.
- 6. Fast analysis.
- 7. Less interference from serum color & turbidity.

Limitations

- 1. Electrodes can be block by proteins.
- 2. Interference by other ions.
- 3. Electrodes are fragile
- 4. Limited electrode life -3 to 4 months.

Application of ISE

- Electrolyte
 - Sodium
 - Potassium
 - Calcium
 - Lithium
 - Iodine
 - Magnesium
 - Chloride
 - Fluoride
- Glucose

- Urea
- Arterial Blood Gas Analysis
 - **pO2**
 - pCO2
 - pH
 - HCO3-