Challenges For Quality Achievement In Clinical Biochemistry Reporting

Dr Piyush B. Tailor Professor & Head Department of Biochemistry Government Medical College , Bhavnagar

The Error - According to Work Zone

Pre-analytical Error

Analytical Error

Post-analytical Error

Most critical Phase

Chances of Error

In

Pre-Analytical Error = Approx. 50 - 70 % Analytic error = 10 - 15 % Post Analytical Error = 20 - 30 %

Process of The Pre-Analytical Area

- 1. Patient Preparation
- 2. Sample Registration
- 3. Sample Request
- 4. Sample Collection
- 5. Sample Transport
- 6. Sample Shorting Accession
- 7. Environmental Condition

• Error in Patient Preparation

- \checkmark Fasting is require in
 - Glucose Tolerance Test (GTT)
 - Lipid Profile -
 - Is only cholesterol estimation require fasting sample????

✓ With Specific Cardiac Markers -

- Sample Collection at Specific Peak Hours
- ✓ Effect of Medicine
 - Patient has not take Oral Hypo-Glycemic medicine before FBS,PP2BS
 - Patient is on TPN (Total Parental Nutrition)

OError Sample Registration

- Vrong Entry Manual Registration Transcription Error
- ✓ LIS failure Not Verified
- Entry Without ID / MRD
- ✓ No / Wrong Barcode / Same Barcode for Different Vacuttee

OError Sample Request

- ✓ Mismatch ID with Request
- Vun-identifiable Parameter Full LFT / Full RFT / All Enzyme
- \checkmark No / Inadequate patient's clinical history

• Error in Sample Collection

Vwrong Collection Site

- ABG collection site Venous sample
- Collection from Infusion Site -
 - Total Parental Nutrition RL infusion
- FNAC from Wrong site

✓ Wrong Collection Time

- FSH / LH / GTT / Lipid Profile
- FBS , PP2BS

OError in Sample Collection

Vwrong Vacuette

- ✓ Routine Biochemistry in EDTA
 - Dis-arrange Electrolyte High Potassium , Low Calcium
 - Which biochemistry test is possible from EDTA?

Wrong Preservative Ratio

- ABG Clotted Sample Wrong Interpretation
- APTT/PT Wrong interpretation

• Error in Sample Collection

Wrong Method of Collection

- Haemolytic of The Blood Sample
- ✓ Small Needle
- ✓ Spirit wet area
- ✓ Forceful Aspiration & Emptying of syringe in vacutte
- ✓ Tight tourniquet Collection with Unreleased tourniquet
- ★ High Potassium
- ★ High Enzymes
- ★ Low Cell Count
- ★ What about Sodium & Glucose ?

OSample Transportation

✓ Haemolysis due to High temperature & Shaking
✓ Long Distance - Increase TAT
✓ Slide / Vacuttee - Not Secure
✓ Cross contamination
✓ Accident - Loss of Sample Bag

Sample Centrifugation - Accession

- ✓ High Speed & More Time
 - Haemolysis
 - Leakage
 - Contamination
- ✓ Low Speed & Less Time
 - Incomplete separation
- ✓ Imbalance
 - Accident Incident Spillage Breakage

Sample Shorting

✓ No Secondary Sample Identification
✓ Carry Over - Sample Separation - Same Micropipette Tips
✓ Re - Utilisation of Aliquot

- Contamination with Glycerol Hypochloride
 - High Glucose
 - High Uric acid
 - High Cholesterol
 - POD Reaction

- Environmental Condition
 - ✓ Privacy
 - Patient does not reveal the history
 - \checkmark No availability of Comfortable Chair
 - Syncope Incomplete collection

Most Common Area

- Wrong or Missing Identification
- Haemolysed, clotted, and insufficient samples
- Inappropriate Containers
- Inappropriate blood to Anticoagulant Ratio
- Missing sample and/or Test request
- **Contamination** from infusion route
- Inappropriate Transport and Storage conditions.

Day to Day Pre - Analytical Issue Impact On Analyte Result

Important of Drug & Medical History

- pO2-300 mmHg ----?????
- Plasma Glucose Report Highly Lipemic———??????
- TSH-0.0006 IU/L With Normal T3 &T4 -----???????

Pre-requisite of Patient & Collection

- ABG Sample Sodium 180 mmol/L -----???????
- K/C/O Diabetic ———??????
 - FBS-100 mg%
 - PP2BS-300 mg%
 - HbA1c 6.0 %

Day to Day Pre - Analytical Issue Impact On Analyte Result

Important of Drug & Medical History

- pO2-300 mmHg ——— Ventilation With High FiO2
- Plasma Glucose Report Highly Lipemic————Uncontrolled DM
- TSH 0.0006 IU/L With Normal T3 &T4 —————Long Term Thyroxin

Pre-requisite of Patient & Collection

- ABG Sample Sodium 180 mmol/L —— Sodium Heparin as Anticoagulant
- K/C/O Diabetic ——— Patient forgot to take drug at time of food
 - FBS-100 mg%
 - PP2BS-300 mg%
 - HbA1c 6.0 %

- Due to Wrong Specification of Instrument / Method
- Due to violation in Performance specification
- Due to Quality Control
- Due to Calibration
- Due to Clinical Condition of The Patient

Drafting Specification for Equipment

- According to Analyte / Laboratory Size / Work Load / TAT
 - Semi Fully Auto Analyser
 - Wet Chemistry Dry Chemistry
 - ELISA CLIA ELFA

Drafting Specification for Reagent

- Liquid stable / Lypholized reagent
- Ready to use / Require to mix
- Pack size Small / Big
- Method Principle
 - Urine Protein Sulphosalicylic Acid / Pyrogellol Red
 - **ALT** With / Without PLP

2 Thiocholine + 2 [F

Cholinesterase Kit Literature

SPECIMEN C Serum or heparinised or EDTA plasma is suitable. Serum or plasma samples remain stable for 14 days at 2-8°C.

KIT PRESENTATION:

KITTRECE	1 X 20 ml	1 X 40 ml	2 X 50 ml
PACK SIZE	1 X 20 mm		2 X 40 ml
(Buffer)	1 X 16 ml	1 X 32 ml	2 X 40 mi
R1- Cholinesterase (Buffer)		1 X 08 ml	2 X 10 ml
R2- Cholinesterase (Substrate)	1 X 04 ml	1 X 08 mi	
R2- Cholmesterase (ease			

WORKING REAGENT PREPARATION

Mixing 4 volumes of R1-Cholinesterase (Buffer) with 1 volume of R2- Cholinesterase (Substrate). i.e. 800 µl R1 + 200 µl R2.

REAGENT STORAGE AND STABILITY

All reagents are stable at 2-8°C until the expiry date stated on the label. Do not freeze the reagents and protect form light.

NORMAL VALUES:

: 3930 - 10800 IU/L Female

: 4620 - 11500 IU/L

Each laboratory should establish its own reference range.

SENSITIVITY / LIMIT OF DETECTION:

CALCULATION:

Cholinesterase Activity (IU/L) = $\Delta A/min X 55000$

LINEARITY:

This method is linear up to 20,000 IU/L. For values above 20,000 IU/L, dilute the sample suitably with 0.9 % saline, and repeat the assay. Apply correction due to dilution to arrive at a final result.

REFERENCES:

1. Recommendation of the German Society for Clinical Chemistry. Standardization of methods for the estimation of enzyme activities In biological fluids: Standard method for the determination of Cholinesterase activity. J Clin Chem Clin Biochem 1992;30:163-70.

2. Thomas L, Clinical laboratory diagnostics, 1, ed frankfurt: TH-Books Verlagsgesellschaft; 1998. P.65-71.

3. Hallbach J, Klinische Chemie fur den Einstieg. 1. ed Stuttgart: Thieme;2001. p.143-4.

Cholinesterase should have Lower limit of Detection 100 IU/L Performance Check Done - LOD - 1000 IU / L

Analytical Error - Limitation of Performance

Performance Specification Required

- Accuracy, Precision, Linearity
- Limit of Blank (LOB)
- Limit of Detection (LOD)
- Measuring Interval

For Better Understanding of Performance

Blood Urea - 300 mg % (GLDH Method) -

Potassium - 9.0 mmol/L (ISE Method) -

Serum Protein - 0.5 gm% (Biuret Method) -

S. Creatinine - 8.0 mg% >>>Repeat Analysis - 8.6 mg% -

RMSDI = (-1.5%) >>>**RMDev%** = (-7%) >>>

Analytical Error - Limitation of Performance

Performance Specification Required

- Accuracy, Precision, Linearity
- Limit of Blank (LOB)
- Limit of Detection (LOD)
- Measuring Interval

For Better Understanding of Performance

Blood Urea - 300 mg % (GLDH Method) - Check Linearity

Potassium - 9.0 mmol/L (ISE Method) - *Check Reportable Range*

Serum Protein - 0.5 gm% (Biuret Method) - Check LOD

S. Creatinine - 8.0 mg% >>>Repeat Analysis - 8.6 mg% - Check Precision

RMSDI = (-1.5%) >>>**RMDev%** = (-7%) >>> *Check Accuracy*

Analytical Error - Due to Clinical Condition

- Chronic Alcoholic Chronic Liver Disease Malnutrition
 - **B6 Deficiency** ALT, AST estimation ??
 - Jaundice Very High Bilirubin Interference ????
- Uncontrolled DM —- What can be very high ???
 - ELISA method affected
 - All most all biochemistry affected
- Haemoglobinopathy HbA1c error

Analytical Error - Due to Methodology

- If Laboratory has made any change in
 - Analyte methodology,
 - Sample / Reagent Volume,
 - Incubation time,

What get affected ???What to do ???

Analyte Error - Due to Calibration

Analyte Error - Due to Calibration

Calibration of Analyse should be

- 1st Point Lower range
- 2nd Point Reference range
- 3rd Point Clinical decision range
- 4th Point Higher range

Analytical Error - Due to QC

Quality Control Validation - IQC, EQAS, Comparability Internal Quality Control

- Inadequate Frequency
- Irrelevant Timing of IQC run
- Wrong selection of Level of IQC
- Wrong L-J Chart = High SD
- No RCA for IQC Outlier
- No IQC Trend / Shift Analysis

External Quality Assurance Scheme

- Mostly observe SDI & Dev%
- But RMSDI & RMDev% -????

MONTHLY CLINICAL CHEMISTRY

LABORATORY REF. NO. 129049/A

CYCLE 16 SAMPLE 6 24/06/2019

Concentration

Due to Inadequate Comparability - Harmonisation
✓ Use of Two Different Methods / Instrument

Post - Analytical Error

Post Analytical Error

Laboratory Information System

- Unverified / Non Validated LIS
- Error in Analyte LIS Interface Code
- No facility for Delta check

Report Format

- Biological Reference Range
 - Old Guideline / Non Scientific
 - Age/geographical Area
- Demographic Data mismatch

Transcription error - In case of Unidirectional Interfase **Critical informing**

- No Cross Verification
- To wrong person or patient

TAT violation

Troubleshoot's For **Quality Achievement** In **Clinical Laboratory**
Way / Method To Do Troubleshoot's For Errors

- 1. Quality Indicator
- 2. Non Conformity Record
- 3. Root Cause Analysis
- 4. Risk Management Preventive Management
- 5. Continual Improvement

1st Way / Method Of Troubleshoot's

Quality Indicator of Pre-Analytical Area

- 1. Number of samples collected in inappropriate containers
- 2. Number of samples haemolysed (haematology, chemistry)
- 3. Number of samples clotted (haematology)
- 4. Number of samples with insufficient volumes
- 5. Number of samples with inadequate sample-anticoagulant ratio
- 6. Number of **improperly labelled** samples
- 7. Number of samples lost/not received
- 8. Number of samples **damaged in transport**
- 9. Number of **improperly stored** samples

1st Way / Method Of Troubleshoot's

Quality Indicator of Analytical Area

- Number of analyte's TE% (total error) violated TEa% (Total Allowable Error) as per guideline
- 2. Number of **Outlier** of analyte's IQC
- 3. Number of EQAS /ILC score violated satisfactory level.
- 4. Percentage of **mismatch result** in repeat analysis
- 5. Number of Reagent lot verification failure
- 6. Downtime of Analyser in month
- 7. Number / Percentage of Calibration failure
- Monitoring and evaluation of \mathbf{CV} % of IQC
- Trend Analysis of L-J Chart
- Monitoring and Evaluation of Monthly **SDI score** of EQAS / ILC

1st Way / Method Of Troubleshoot's

Quality Indicator of Post-Analytical Area

- 1. Number or Percentage of Analyte violate TAT
- 2. Number or Percentage of report with Transcription Error
- 3. Number of patient's report not co-related with clinical history or previous result.
- 4. Number of **critical report** are not informed
- 5. Number of critical informed report are **not cross verified**.

1st Way / Method Of Troubleshoot's Implementation of Quality Indicator

- Prioritised Quality Indicator
- Define Bench Mark of Quality Indicator
- ➡Data Collection
- ➡ Finding Outliers
- Root Cause Analysis
- Corrective Action Preventive Action Risk Managment
- Continual Improvement Updation of Bench Marks

2nd Way / Method Of Troubleshoot's

Non Conformity Records

- 1. Every Violation of Quality Indicator >>>>> Non-Conformity
- 2. Find and Do
 - Immediate Action Corrective Action
- 3. Root Cause Analysis
 - Do accordingly preventive action
- 4. Document it Excel File Easy to Short
- 5. Monthly short NC Find Most Violated Part
 - Most Commonly Violated Personnel / Analyse / Instrument
 - Most Commonly Violated Clause of ISO 15189
 - Most Weak area of Laboratory
- 5. Risk Management

3rd/Method Of Troubleshoot's

Root Cause Analysis

Ishikawa Technic - Fish Bone Technic

4th Way / Method Of Troubleshoot's

Risk Management

- Management of Possible Threat
- To minimise chance of Violation / Incident / Accident
- Same as Preventive action
- But It also include management of threat which is not occurred before.

5 Why Technic of Root Cause Analysis

More than 10% Sample Haemolysed (Violation of Bench Mark)

in October 2023

5 Why Technic	Scenario - 1			
1st Why	New transport bag was introduced and it unable to maintain temperature			
2nd Why	Laboratory management has not taken working demo before purchase			
3rd Why	Vendor for transport of bag was well known, old and faithful.			
4th Why	Vendor evaluation was not don e with proper benchmark and it was just done on paper for NABL assessment.			
5th Why	NABL accreditation process was implemented in laboratory from consultant - (Root Cause)			
Corrective Action	Management asked Vendor to correct transport bag immediately for temperature maintaining facility.			
Preventive Action	Management asked his most competent and sincere laboratory person for " 4 Days Internal Auditor Training as Per ISO 15189:2022 & set priority for appointing employee who has competency related ISO15189			

5 Why Technic of Root Cause Analysis

More than 10% Sample Haemolysed

(Violation of Bench Mark)

in October 2023

5 Why Technic	Scenario - 2			
1st Why	Most of sample collection is done by untrained staff.			
2nd Why	Most of the sample are received from referring hospital and their nursing staff are not trained for sample collection and transportation.			
3rd Why	Laboratory management has focused on training of their own phlebotomist . (Root Cause)			
4th Why				
5th Why				
Corrective Action	Laboratory management asked their trained phlebotomist to remain at hospital at peak hours of the hospital .			
Preventive Action	Laboratory management asked hospital management to give chance /slot to train their nursing staff for sample collection during any of their own training session.			

5 Why Technic of Root Cause Analysis

More than 10% Sample Haemolysed

(Violation of Bench Mark)

in October 2023

5 Why Technic	Scenario - 3			
1st Why	In Civil Hospital, Collected sample are brought by ward-boy without cold chain			
2nd Why	Cold chain box are available but nursing staff does not using it.			
3rd Why	Previously purchased cold chain box are stolen.			
4th Why	Nursing incharge was not maintaining log-book for " Cold Chain Box Log "			
5th Why	Nursing staff is not sensitised to maintain sample transportation log as well as sample transport bag log. (Root Cause)			
Corrective Action	Laboratory director has taken charge and responsibility of all their "Cold Chain Box" and Started using it with maintaining it's traceability and log.			
	LD asked hospital admin to arrange sensitisation training about related Good Laboratory Practice for Nursing Staff. & asked Medical Superitendent to purchased GPS sensory for "Cold Chain Box", to track transport box, TAT and to evaluate activity of Ward-Boy.			

Hello. I make comics about work. Every Mon & Fri. Hit the follow button to get the comics in your feed. Work Chronicles workchronicles.com

5th Way/Method Of Troubleshoot's

Continual Improvement

Continual

Do some Improvement

>>> Sustain improvement & Move again for

Another level Improvement.

Continuous Improvement will be **without break** in process

Not possible in medical laboratory

5th Way / Method Of Troubleshoot's

Continual Improvement

Process area Covered	Area of Improvement	Present Day Target	Target for 2024	Target for 2025
Examination	IQC Data Analysis	Monthly CV % < 50% of TEa	Monthly CV % < 40% of TEa	Monthly CV % < 30% of TEa
Examination	EQA results	EQAS outlier in Less 10% of parameter of the scope	EQAS outlier in Less 7% of parameter of the scope	EQAS outlier in Less 5% of parameter of the scope
Post - Examination	Overall objectives - TAT Analysis	TAT outlier < 10%	TAT outlier < 5%	TAT outlier < 3%

5th Way / Method Of Troubleshoot's

Example For Continual Improvement

- XYZ large size laboratory
- Maintained Minimum Error >>>> In Patient Registration.
- During Evaluation >>> "User's Feedback"
 - 1. Drinking facility is not available at reception.
 - 2. Patient waiting time at reception is high.
 - 3. Air-conditioning is not there at area around relative lounge.
- Laboratory selected 2nd point
 - Significant numbers of user's feedback of higher waiting time in registration area,
 - As per Highest Priority
- This was never evaluated through defined Quality Indicator.
- Made arrangement >>>> Addition Registration Counter >>> Improvement Activity.
- Check effectiveness of the action take
- Added Quality indicator for "Monitoring of Waiting time at Registration Area"

Thank You Very Much Rajkot Association of Pathologist & Microbiologist For Inviting Me and Giving Chance To Connect With You

My Síncere, Apprecíation To You For Investing Your Presence & Precíous Tíme