Quality Control In Clinical Biochemistry Laboratory As per ISO 15189:2012 & NABL - 112

Dr Piyush Tailor

Associate Professor Department of Biochemistry BJMC,Ahmedabad Outline - Quality Control as per ISO 15189:2012 & NABL-112

- Frequency of QC as per NABL 112
- Finding Mean and SD for New Lot of IQC
- Cumulative Mean & SD
- Alternate Approach of EQAS
 - Exchange of samples with other accredited laboratories - Analysis
- Method of Harmonization of method / instrument.

IQC Frequency as per NABL-112

- Irrespective of the size of the laboratory
 - Two levels of IQC atleast once on the day of patient sample testing.
- 24 x 7 Laboratory
 - Two level IQC = In the peak hour
 - Subsequently One level every 8 hours.
- Daily Levey-Jennings chart
- CAB shall define its own criteria for accepting or rejecting the run.

IQC Frequency as per NABL-112

For Blood Gas Analysis

- For Automatically Calibrating Instrument at predefined internals.
 - At least one control @ every eight hours.
- For Automatically Not calibrating Instrument.
 - At least one control @ every eight hours.
 - Addition, One control With each patient sample (sample lot)

Example

- XYZ laboratory working 8 am to 8 pm
- Average Sample Load = 40 samples/day
- Average Test Load = 200 tests/day
- Scope
 - Routine Biochemistry
 - Clinical Haematology
 - ABG by cartridge method (sample frequency 1-2 in day)
 - TSH alternate day with ELISA
- What should be IQC frequency require?

IQC frequency require for XYZ CAB

- For Routine Biochemistry & Clinical Hematology
 - Normal Level IQC @ 8 AM
 - Abnormal Level IQC @ 2 PM

– OR

- Two Level IQC @ 8 AM
- For TSH
 - Two Level IQC with each TSH sample lot run
- For ABG
 - One level IQC 8 hourly in day (??????)
 - One Level with each lot of sample

When Commercial IQC is not available

- Pool sera
- Re-testing
 - Two sample
 - Normal Sample & Abnormal Sample

Finding Mean for New lot IQC

Establishing Mean :

- Derive own Mean
- Using a minimum of **20 data** points.
- New Lot of IQC and Old Lot IQC Parallel run
 Method I
- 20 data minimum obtained on separate days.
 Method II
- < 20 data Provisional Mean
- 4 QC data per day Atleast 5 different days.

New Mean should be with-in manufacturer QC range

Finding SD for New lot IQC

Old Data available

• Use old CV% to find SD

Old Data NOT available

- Estimated of SD of 20 data point of new lot.
- Reevaluated periodically.
- Compare with Global / Universal CV%
 - Manufacturer collected CV% from all instrument and all methods

Cumulative Values

- Cumulative Mean & SD
 - 20 days
 - 60 days.....
 - 90 days...???
 - Update after Every 60 days
- No Any Fix Guidelines

Cumulative Mean

- Delta SD (SDI)
- Delta SD = (<u>New Mean Old Mean</u>)

Old SD in use

- Example
- ? SDI > 0.5 than.....action decided

Example for Selecting SD

- Old Lot have CV% = 5 % for Serum Glucose
- Global CV% from QC manufacturer = 3%
- After 20 data point of New Lot
 - New Mean = 200 mg%
 - New S.D. = 14.0
 - CLIA TAE = 10%

Example for Selecting SD

- Old Lot have CV% = 5 % for Serum Glucose
- Global CV% from QC manufacturer = 3%
- After 20 data point of New Lot
 - New Mean = 200 mg%
 - New S.D. = 14.0
 - CLIA TAE = 10%
- CAB has following choice for selecting SD
 - OLD 5 CV% = Calculated New S.D. = 10.0
 - From 20 point New S.D = 14.0 (X)
 - From Global CV% New S.D. = 6.0

Cumulative SD

- **2SD** < **TAE** as per CLIA criteria
- SD < half of TAE
- Make Own Policy for updation of SD,
 - Example of policy
 - 20 % change in new SD
 - Change in method / equipment
 - No. of available data should be >60
- Update SD after longer period of stable operation.

EXAMPLE – Correct / Incorrect

Mean & SD value of Drawing L-J for Serum GLUCOSE					
+ 3 SD	236				
+ 2 SD	224				
+ 1 SD	212				
Mean	200				
- 1 SD	188				
- 2 SD	176				
- 3 SD	164				

Alternate Approach of EQAS

When to Implement alternate approach

- Non-availability of a formal national PT programme
- Only few laboratories performing the test
- Unstable parameter
 - Blood gases
 - Ammonia
 - G6PD
- Control material of the same matrix is not available
- The sample is completely consumed during performance of the test (e.g. ESR)

Alternate Approach of EQAS

What are alternate approach for proficiency

- Replicate testing
- Examination of split samples
- Use of reference methods & materials
- Exchange of samples with other accredited laboratories

Exchange of samples with other accredited laboratories - Analysis

- Called "ILC" ???
- Comparison of value according to
 - CV %
 - Total allowable error % as per guideline
 - CLIA
 - CAP
- Regression analysis
- CLSI document EP9 Measurement Procedure Comparison and Bias Estimation Using Patient Samples.

Interpretation of ILC for ALT

Sample Id		Reference Lab result		Acceptable Criteria	Acceptable Yes/No	QM Signature
100022	124	112	10.7%	20% CLIA	Yes	
100114	45	43	4.6%	20% CLIA	Yes	

Method of Harmonization of method / instrument.

- When More than one measuring system / method
- Performance check for throughout clinical intervals.
- At least twice in a year
- Bland Altman plot
- Regression analysis.

Harmonization of Instrument A & B for ALT

Harmonization of Instrument A & B for ALT							
Sample No.	Instrument A	Instrument B	Difference %	Mean			
1	100	100	0.00	100			
2	100	105	-5.00	102.5			
3	110	120	-10.00	115			
4	200	200	0.00	200			
5	142	138	4.00	140			
6	165	190	-25.00	177.5			
7	134	146	-12.00	140			
8	176	180	-4.00	178			
9	122	134	-12.00	128			
10	140	144	-4.00	142			
	Bias	-6.80					
	SD	8.32					
	Lower limit	-23.11503					
	Upper limit	9.5150297					

Bland - Altman plot

Linear Regression Plot

- y = a (x) + b
- a = shall be near to 1.0
- b = shall be less than CV%

